Sunday, December 27, 2015

Infinity and Beyond 5: Examples

Infinite sums
  1. Geometric series: n02n
    20+21+22+23+=2.
  2. Telescoping series: n11n(n+1)
    112+123+134+145+=1.
  3. James Gregory's (or Leibniz) series
    1113+1517+=π4.
  4. Euler's series: n1n2
    112+122+132+142+=π26.
  5. Euler's series: n1(2n1)2
    112+132+152+172+=π28.
  6. Euler's alternating series: n1(1)n+1n2
    1122+132142+152162+=π212.
  7. Euler's alternating series: n1(1)n+1(2n1)3
    1133+153173+1931113+=π232.
  8. Alternating Harmonic Series:
    1112+1314+=ln(2).
  9. Nilakantha (15th century) I:
    115+41135+43+155+45175+47+=π16.
  10. Nilakantha (15th century) II:
    3+43334535+47374939+=π.

Infinite products

  1. John Wallis' product
    224466133557=π2.
  2. François Viète's product
    12222+222+2+222+2+222=1π.
  3. n2(1n2)
    (1122)(1132)(1142)=12.
  4. n3(14n2)
    (1432)(1442)(1452)=16.

Continued fractions

  1. π
    1+122+322+522+722+=4π.
  2. more π
    1+123+225+327+429+=4π.
  3. Golden ratio
    1+11+11+11+=ϕ=1+52.

What not

  1. Golden ratio
    1+1+1+1+=ϕ=1+52.

No comments:

Post a Comment