Infinite sums
- Geometric series:
∑n≥02−n 20+2−1+2−2+2−3+…=2. - Telescoping series:
∑n≥11n(n+1) 11⋅2+12⋅3+13⋅4+14⋅5+…=1. - James Gregory's (or Leibniz) series
11−13+15−17+…=π4 . - Euler's series:
∑n≥1n−2 112+122+132+142+⋯=π26. - Euler's series:
∑n≥1(2n−1)−2 112+132+152+172+⋯=π28. - Euler's alternating series:
∑n≥1(−1)n+1n−2 1−122+132−142+152−162+⋯=π212. - Euler's alternating series:
∑n≥1(−1)n+1(2n−1)−3 1−133+153−173+193−1113+⋯=π232. - Alternating Harmonic Series:
11−12+13−14+…=ln(2) . - Nilakantha (15th century) I:
115+4⋅1−135+4⋅3+155+4⋅5−175+4⋅7+…=π16. - Nilakantha (15th century) II:
3+433−3−453−5+473−7−493−9+…=π.
Infinite products
- John Wallis' product
2⋅2⋅4⋅4⋅6⋅6⋅…1⋅3⋅3⋅5⋅5⋅7⋅…=π2. - François Viète's product
12⋅2√2⋅2+2√√2⋅2+2+2√√√2⋅2+2+22√√√√2⋅…=1π. ∏n≥2(1−n−2) (1−122)⋅(1−132)⋅(1−142)⋅…=12. ∏n≥3(1−4n−2) (1−432)⋅(1−442)⋅(1−452)⋅…=16.
Continued fractions
π 1+122+322+522+722+…=4π. more π 1+123+225+327+429+…=4π. - Golden ratio
1+11+11+11+…=ϕ=1+5√2.
What not
- Golden ratio
1+1+1+1√+…−−−−−−−−−−√−−−−−−−−−−−−−−−√−−−−−−−−−−−−−−−−−−−−√=ϕ=1+5√2.
No comments:
Post a Comment